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INTRODUCTION

We present easy-to-use alternatives to the often-used two-stage Common Spatial Pat-
tern [1]+classifier approach for spatial filtering and classification of Event-Related Desy-
chnronization signals in BCI. We report two algorithms that aim to optimize the spatial
filters according to a criterion more directly related to the ability of the algorithms to
generalize to unseen data. Both are based upon the idea of treating the spatial filter
coefficients as hyperparameters of a kernel or covariance function. We then optimize
these hyper-parameters directly along side the normal classifier parameters with respect
to our chosen learning objective function. The two objectives considered are margin-
maximization as used in Support-Vector Machines [2], and the evidence maximization
framework used in Gaussian Processes [3].

RESULTS

Preliminary results below show average generalization error over 8 test folds, on 5 of-
fline motor imagery data sets measured in Tiibingen. Both the our approaches show
consistent improvements relative to the commonly used CSP+linear classifier combina-
tion. Strikingly, the improvement is most significant in the higher noise cases, when
either few trails are used for training, or with the most poorly performing subjects.
This a reversal of the usual “’rich get richer” effect in the development of CSP extensions
(such as CSSP [4] or CSSSP [5]) which tend to perform best when the signal is strong
enough to accurately find their additional parameters. This makes our approach partic-
ularly suitable for clinical application where high levels of noise are to be expected.

100/300 (Train/Test) 2007200 (Train/Test)
Subj hm\je\jv\ms\nl hm\je\jv\ms\nl
CSP || 34 |24 1002|451 29 210902 |34
MM | 27 [20[05| 01 (37| 24 | 18|05 | 01 | 30

GP | 28 |19|05]02 37| 26 |16|05| 02|32
Table I Error rates (%) for the different algorithms.
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